P(1/2)=2x^2-9x-8

Simple and best practice solution for P(1/2)=2x^2-9x-8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(1/2)=2x^2-9x-8 equation:



(1/2)=2P^2-9P-8
We move all terms to the left:
(1/2)-(2P^2-9P-8)=0
We add all the numbers together, and all the variables
-(2P^2-9P-8)+(+1/2)=0
We get rid of parentheses
-2P^2+9P+8+1/2=0
We multiply all the terms by the denominator
-2P^2*2+9P*2+1+8*2=0
We add all the numbers together, and all the variables
-2P^2*2+9P*2+17=0
Wy multiply elements
-4P^2+18P+17=0
a = -4; b = 18; c = +17;
Δ = b2-4ac
Δ = 182-4·(-4)·17
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{149}}{2*-4}=\frac{-18-2\sqrt{149}}{-8} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{149}}{2*-4}=\frac{-18+2\sqrt{149}}{-8} $

See similar equations:

| 3(6x-1)=33x | | 5x-14=x+4+7x | | 2v–-1=5 | | 232=64-y | | 4x-6+10=10x-7x+5 | | -19.67+1.7k-4.88=19.25+7.7k | | s+10=2s | | 2x+6=2x-12 | | 3x+17+2x-2=48-3x+39 | | {x}{3}-7=2x+13 | | 19-13p=-p-5 | | u+3=-7 | | .75(x+20)=2+0.5(x-2) | | 10(x+1+(x+5))=82 | | X^2/2(1-x)=0 | | 4y/3=9/6 | | M^2=23m-132 | | x/4-2=5x= | | .75(x+20)=2+0.5(x-4) | | 4+55x=44+12 | | -30=1.24c | | 13(x+3)–2(3x+11)=2x+7 | | 10y-2=7y+19 | | 7+2x/3=5 | | -90=5(t+30) | | 4/x-3=5/x+5 | | x^2+9x^-2-10=0 | | 3x^2-33x+91=1 | | 13(3x+3)-2(3x+11)=2x+7 | | 6x^2-13x-7=0 | | 84d−4=5d−8 | | 2x-4/6=12 |

Equations solver categories